Mars (planeta)
Mars Hubble.jpg

Planeta Mars (taktéž Rudá planeta)

Elementy dráhy
(Ekvinokcium J2000,0)
Velká poloosa 227 936 637 km
1,523 662 31 AU
Obvod oběžné dráhy 1,429×1012 km
9,553 AU
Výstřednost 0,093 412 33
Perihel 206 644 545 km
1,381 333 46 AU
Afel 249 228 730 km
1,665 991 16 AU
Perioda (oběžná doba) 686,9601 d
(1,8808 a)
Synodická perioda 779,96 d
Orbitální rychlost
- maximální
- průměrná
- minimální

26,499 km/s
24,077 km/s
21,972 km/s
Sklon dráhy
- k ekliptice
- ke slunečnímu rovníku

1,850 61°
5,65°
Délka vzestupného uzlu 49,578 54°
Argument šířky perihelu 286,462 30°
Počet
přirozených satelitů
2
Fyzikální charakteristiky
Rovníkový průměr 6792,4 ± 0,2 km
(0,533 Zemí)
Polární průměr 6752,4 ± 0,2 km
(0,531 Zemí)
Zploštění 0,005 89 ± 0,000 15
Povrch 1,448×108 km2
(0,284 Zemí)
Objem 1,638×1011 km3
(0,151 Zemí)
Hmotnost 6,4185×1023 kg
(0,107 Zemí)
Průměrná hustota 3,934 g/cm3
Gravitace na rovníku 3,69 m/s2
(0,376 G)
Úniková rychlost 5,027 km/s
Perioda rotace 1,026 d
Rychlost rotace 868,22 km/h
(na rovníku)
Sklon rotační osy 25,19°
Rektascenze
severního pólu
317,681 43°
(21 h 10 min 44 s)
Deklinace 52,886 50°
Albedo 0,15
Povrchová teplota
- min
- průměr
- max

186 K
210 K
293 [1] K
Charakteristiky atmosféry
Atmosférický tlak 0,7–0,9 kPa
Oxid uhličitý 95,32 %
Dusík 2,7 %
Argon 1,16 %
Kyslík 0,07 %
Oxid uhelnatý 0,07 %
Vodní páry 0,03 %
Oxid dusnatý 0,01 %
Neon 0,000 25 %
Krypton 0,000 03 %
Xenon 0,000 008 %
Ozón 0,000 003 %
Metan 0,000 001 05 %

Mars je čtvrtá planeta sluneční soustavy, druhá nejmenší planeta soustavy po Merkuru. Je pojmenována po římském bohu války Martovi. Jedná se o planetu terestrického typu, tj. má pevný horninový povrch pokrytý impaktními krátery, vysokými sopkami, hlubokými kaňony a dalšími útvary. Má dva měsíce nepravidelného tvaru pojmenované Phobos a Deimos.

V období, kdy je Mars v opozici ke Slunci a Země se tak nachází mezi těmito dvěma tělesy, je Mars pozorovatelný na obloze po celou noc. Spolehlivé informace o prvních pozorováních Marsu jako planety neexistují, ale je pravděpodobné, že k nim došlo mezi lety 3000 až 4000 př. n. l. Všechny starověké civilizace, Egypťané, Babylóňané a Řekové, znaly tuto „putující hvězdu“ a měly pro ni svá pojmenování. Kvůli jejímu načervenalému nádechu, způsobenému červenou barvou zoxidované půdy na jejím povrchu, považovaly staré národy Mars většinou za symbol ohně, krve a zániku.

Detailní zkoumání planety umožnilo od 60. let 20. století takřka 20 úspěšných automatických sond. V současné době jsou na oběžné dráze kolem Marsu tři funkční sondy (Mars Odyssey, Mars Express a Mars Reconnaissance Orbiter) a na povrchu planety se pohybují dvě vozítka mise Mars Exploration Rover (Spirit a Opportunity),[2] která poskytla data, jež umožnila zmapovat větší část povrchu, definovat základní historická období či porozumět základním jevům odehrávajícím se na planetě.

Vznik

Mars vznikl podobně jako ostatní planety našeho systému přibližně před 4,5 miliardami let[3] akrecí z pracho-plynného disku, jenž obíhal kolem rodící se centrální hvězdy. Srážkami prachových částic se začala formovat malá tělesa, která svou gravitací přitahovala další částice a okolní plyn. Vznikly tak první planetesimály, které se vzájemně srážely a formovaly větší tělesa. Na konci tohoto procesu v soustavě vznikly čtyři terestrické protoplanety. V porovnání s ostatními má Mars – nejvzdálenější z terestrických planet – nejvyšší zastoupení lehkých prvků jako křemík, hliník či síra.

Po zformování protoplanety docházelo k masivnímu bombardování povrchu zbylým materiálem ze vzniku soustavy, což mělo za následek jeho neustálé přetváření a přetavování. Je dokonce možné, že celý povrch byl roztaven do podoby tzv. magmatického oceánu, jehož tepelná energie společně s teplem uvolněným diferenciací pláště a jádra je dodnes kumulována v nitru planety a umožňuje existenci vulkanismu a tektonických procesů.[4]

[editovat] Fyzikální charakteristiky

Mars má oproti Zemi zhruba čtvrtinovou plochu povrchu a přibližně desetinovou hmotnost (1,448×108 km2 a 6,4185×1023 kg). Sluneční den je podobně dlouhý jako na Zemi (24 hodin, 39 minut a 35,244 sekund) a nazývá se Sol.

Geologická stavba Marsu je podobná jako Země. Na povrchu kůra, pod ní plášť a uprostřed jádro
(umělecká představa)

[editovat] Geologické složení

Podrobnější informace naleznete v článku Geologie Marsu.

Přesné geologické složení planety není známo, ale na základě astronomických pozorování a průzkumu několika desítek meteoritů z Marsu,[5] které byly nalezeny na Zemi, se soudí, že povrch Marsu je tvořen převážně z čedičů. Oproti pozemským čedičům jsou některé oblasti obohaceny o křemičitanovou složku, podobající se až pozemských andezitům (na druhou stranu je možné, že jsou tvořeny i sopečným sklem). Při pozorování je planeta načervenalá, což je způsobeno pokrytím celého povrchu planety oxidem železitým. V okolí Marsu se v současnosti nevyskytuje globální magnetické pole, avšak některé oblasti planety vykazují trvalou magnetizaci, což svědčí pro hypotézu, že historické magnetické pole bylo globálního charakteru. Na povrchu se nevyskytuje voda v tekutém stavu, což může být jeden z důvodů proč na Marsu není pozorována desková tektonika. V minulosti (zejména na počátku vývoje planety) však mohla být část kůry mobilní, a v takovém případě by pozorované peleomagnetické anomálie mohly souviset s tvorbou nové kůry,[6] podobně jako je tomu u zemských středooceánských hřbetů.

Vzhledem k faktu, že na Marsu nebyly prováděny podrobné geologické průzkumy, jsou současné poznatky o planetě a její vnitřní stavbě velmi slabé a založeny převážně na srovnáních se Zemí a teoretických modelech založených na nepřímých měřeních pořízených automatickými sondami. Odhaduje se, že planeta má žhavé, zčásti tekuté jádro, které má přibližně 1480 km[7] v průměru a je složené převážně ze železa s 15 – 17 váhových % příměsí síry, což je až dvakrát více než je obsah síry v jádru Země.[7]

Jádro je obklopeno křemičitým pláštěm, jehož aktivita spojená s tepelným vývojem dala vzniknout většině tektonických a vulkanických útvarů na planetě. V současnosti je tato aktivita minimální, avšak v hlubších částech pláště může plášťová konvekce stále probíhat. Nejsvrchnější část pláště tvoří kůra, jejíž průměrná mocnost dosahuje 50 km až 125 km.[7]

Největší hora sluneční soustavy Olympus Mons. Velikost základny je přibližně 600 km, přičemž hora ční asi 24 km nad okolní planinou[8]
(Viking 1)

[editovat] Povrch

Podrobnější informace naleznete v článcích Povrch Marsu a Vulkanismus na Marsu.

Do 60. let 20. století se všeobecně věřilo, že polární čepičky Marsu jsou složené ze zmrzlé vody. Během průzkumu kosmickými sondami se ale ukázalo, že Mars má atmosféru složenou především z oxidu uhličitého s pouze malou příměsí vody, která se předpokládala v polárních oblastech. Na základě tohoto zjištění byl následně vytvořen model atmosféry Marsu, ze kterého vyplynulo, že dostatečně nízké teploty způsobily zkondenzování a zmrznutí samotného CO2 na pólech. Kvůli tomuto periodickému ději (na Marsu se střídají roční období podobně jako na Zemi) dochází také k významné změně tlaku během roku. Další podrobné zkoumání nicméně ukázalo, že se póly skládají z vodního i suchého ledu (H2O i CO2).

Pro pozorovatele mimo planetu má Mars převážně červenou barvu, přesněji bledě oranžovou nebo růžovou se dvěma bělavými oblastmi polárních čepiček. Na červených oblastech se nacházejí rozličné světlé a tmavé plochy s nazelenalou barvou. Tmavé plochy ovšem nejsou oceány vody, protože ta se na Marsu nemůže vyskytovat v tekutém stavu kvůli nízkému atmosférickému tlaku (~600 Pa). Tyto změny v jasnosti povrchu jsou způsobené rozdílným druhem povrchového materiálu: světlejší naoranžovělé oblasti obsahují prach a písek bohatý na oxid železitý; tmavší plochy jsou zpravidla více kamenité a skalnaté regiony. Nahodilé silné větry, které se na Marsu vyskytují, přesouvají prach a mění tak rozměry a tvary těchto světlejších a tmavších ploch.

Povrch Marsu je velmi různorodý. Jižní polokoule s víceméně hornatou krajinou je pokryta krátery, zatímco na severní polokouli jsou rozsáhlé rovné pláně zalité lávou. Obecně je povrch Marsu pokryt skalnatými a nebo kamenitými útvary, které jsou místy překryty prachem a písečnými dunami. Na Marsu se nachází značné množství kráterů, koryt, kaňonů a sopek. Je zde v současnosti nejvyšší známá hora sluneční soustavy – štítová sopka Olympus Mons, která dosahuje výšky 27 km nad okolní terén. V rovníkové oblasti Marsu se nachází obrovský kaňon Valles Marineris, dlouhý 4 500 km a hluboký 7 km. Objevila ho sonda Mariner 9 mapující Mars v letech 19711972, podle které byl kaňon pojmenován. Průzkum sondami Viking přinesl i snímky oblasti Cydonia Mensae, na kterých se objevil zvláštní útvar připomínající lidskou tvář obrácenou k nebi.[9] Tento skalní útvar se později začal označovat jako tzv. „tvář z Marsu[10] a považoval se za umělé díle mimozemské civilizace. Pozdější kvalitnější snímky ale ukázaly, že se jednalo pouze o hru světla a stínu na obyčejném erodovaném skalním masívu.[10]

[editovat] Atlas

Globo de Marte - Valles Marineris.gif Globo de Marte - Syrtis Major.gif Globo de Marte - Elysium Planitia.gif

Pojmenování povrchových útvarů Marsu je složitější než v případě Merkuru a Venuše, jelikož názvosloví vznikalo více než sto let již od prvních pozorování prováděných italským astronomem Giovannim Schiaparellim roku 1877. Ten během pozorování začal pro útvary používat jména známé z Evropy, Asie a Afriky, které spojoval s mytologickými názvy. V práci, kterou Schiaparelli započal, pokračoval i Eugene Antoniadi, v obou případech byly pojmenovány ale výrazné albedové útvary, které ne nutně odpovídaly objektům na povrchu. Po roce 1973 došlo k podrobnému zmapování povrchu Marsu pomocí sondy Mariner 9, což přineslo velkou revizi názvů a jejich úpravu, na které je postaveno současné názvosloví.[11]

[editovat] Poznámky

Nulová výška: Protože Mars nemá žádné vodní plochy, neexistuje tedy ani žádná přirozená nulová výška jako je u Země hladina světového oceánu, od které by se mohly měřit topografické výšky. Byla tedy zavedena umělá nulová výška povrchu, do 90. let 20. století daná atmosferickým tlakem 6,1 mbar a později daná středním gravitačním potenciálem v oblasti rovníku planety.[12]

Nultý poledník: Rovník Marsu je dán rotací, ale nultý poledník byl určen podobně jako na Zemi, dohodou, že prochází určitým konkrétním bodem. Astronomové v 19. století si za tento bod zvolili s poměrně velkou nepřesností kruhový útvar na povrchu označovaný jako Sinus Meridiani. Teprve roku 1972, poté co sonda Mariner 9 získala první podrobnější snímky, bylo určeno, že nultý poledník prochází malým kráterem Airy-0 v oblasti Sinus Meridiani.

Interaktivní mapa Marsu
Tharsis Hellas Planitia Olympus Mons Valles Marineris Arabia Terra Amazonis Planitia Elysium Mons Isidis Planitia Terra Cimmeria Argyre Planitia Alba PateraMapa Marsu
Informace o tomto obrázku
Mars map scale-coloured.png
Kliknutím na požadovanou oblast budete přesměrováni na odpovídající článek.
Barva udává výšku nad nebo pod referenčním elipsoidem.
Po stranách lze odečítat zeměpisnou šířku a délku.

[editovat] Stratigrafie

Podrobnější informace naleznete v článku Stratigrafie Marsu.

Stratigrafie Marsu je vědní disciplína v planetologii, která se snaží rozčlenit základní stratigrafické jednotky na Marsu. V současnosti se skládá ze tří základních jednotek, které byly vyčleněny na základě fotografií sondy Viking ze 70. let. Nyní, vzhledem k získávání stále nových dat ze sond z posledního desetiletí, které kolem Marsu obíhají či po něm jezdí, procházejí podstatnou revizí. Vzhledem k tomu, že zatím není možné získat geologické vzorky přímo z hornin na povrchu, je celá stratigrafie založena na pozorování svrchní vrstvy kůry, respektive na projevech impaktů cizích těles na povrch.

Pozorováním kráterů byly vyčleněny tři základní historická období v geologické historii planety: noachian, hesperian a amazonian.

Nad povrchem je viditelná atmosféra
(Mars Global Surveyor)

[editovat] Atmosféra

Podrobnější informace naleznete v článku Atmosféra Marsu.

Mars má dnes velmi řídkou atmosféru, která není schopná zadržovat tepelnou výměnu mezi povrchem a okolním prostorem, což má za následek velké tepelné rozdíly během dne a noci. Tlak na povrchu se pohybuje mezi 600 až 1000 Pa, což je přibližně 100 až 150krát méně než na povrchu Země či jako přibližně ve 30 km nad jejím povrchem. Podobně jako na Zemi ale dochází ke změnám v atmosféře v závislosti na sezónních výkyvech, jak se planeta přibližuje a oddaluje od Slunce. V zimě 25–30 % atmosférického oxidu uhličitého zmrzne na pólech, zatímco v létě opět sublimuje a vrátí se do atmosféry.

Atmosféra je tvořena převážně z oxidu uhličitého (95,32 %), dále obsahuje: dusík (2,7 %), argon (1,6 %), kyslík (0,13 %), oxid uhelnatý (0,07 %) a vodní páry (0,03 %),[13] která vzniká sublimací z polárních čepiček. Mezi ostatní plyny vyskytující se v atmosféře se pak ještě řadí neon, krypton, xenon, ozón a metan (který je možným indikátorem života na Marsu, jelikož podléhá rychlému rozpadu[14]).

Průměrná teplota u povrchu planety je okolo −56 °C. Pro Mars jsou charakteristické velké rozdíly mezi dnem a nocí. Na rovníku se teploty běžně pohybují od −90 do −10 °C, a nad nulu se dostanou jen výjimečně. Naproti tomu teplota povrchové vrstvy půdy může někdy dosáhnout až +30 °C. I přes tyto občasně příznivé teploty nemůže na povrchu existovat kapalná voda. Voda by se okamžitě začala vypařovat vlivem nízkého tlaku. Ve výšce okolo 40 až 50 km nad povrchem se nachází vrstva, která má stálou teplotu. Následně ve výšce přibližně 130 km začíná ionosféra a vodíková koróna planety dosahuje až do výšky 20 000 km.[15]

Podrobné znalosti o složení atmosféry, jejích změnách a o dlouhodobějším klimatu byly získány díky několika sondám, které na povrchu přistály (např. Viking 1 a 2, Spirit, Opportunity atd.), či které zkoumaly atmosféru z orbity. Na základě měření se zjistilo, že i na Marsu panuje skleníkový efekt, který otepluje planetu přibližně o 5° C[16] a zadržuje okolo 30 % tepelné energie.[17] Výškově se atmosféra dělí na nižší (do 45 km), střední (do 110 km) a vyšší (nad 110 km).

[editovat] Oblačnost

Na Marsu byla pozorována i oblačnost[18], která je nejspíše tvořena krystalky oxidu uhličitého[19] vznikajících ve výšce okolo zhruba patnácti kilometrů. Vyjma oblačnosti se zde projevují i další procesy napovídající, že i na Marsu panují procesy měnícího se počasí. Vedle počasí je atmosféra planety také dějištěm častých prachových bouří, které občas dosáhnou celoplanetárního charakteru[20] nebo i malé vzdušné víry v podobě prašných vírů.[21] Během bouří mohou větry na povrchu planety dosahovat až rychlostí okolo 200 km/h, vynášejíce do atmosféry značné množství drobných prachových částic (obsahujících magnetit) o velikosti 0,1 mikrometru až 0,01 mm. Protože magnetit má větší schopnost pohlcovat modré světlo než červené, atmosféra se při pohledu z planety zdá žlutavá, či při východu/západu Slunce červená. Proces, který toto způsobuje je složitější než Rayleighův rozptyl, který je znám ze Země způsobující zde modrou barvu. Průměrné rychlosti větru jsou však 35 až 50 km/hod.[15] Díky řidší atmosféře ale nemá vítr takovou sílu jako obdobný vítr na Zemi.

[editovat] Voda

Podrobnější informace naleznete v článku Voda na Marsu.
Ma'adim Vallis – koryto vyhloubené tekoucí vodou v oblasti kráteru Gusev (horní kráter, který dosahuje průměru 170 km)
(Viking)

V současnosti kvůli nízkému tlaku nemůže na povrchu Marsu existovat voda v tekuté podobě – existuje buď ve formě ledu nebo jako vodní pára, která vzniká sublimací při zvýšení teploty. Dle pozorování se zdá téměř jisté, že se na povrchu planety tekoucí voda v minulosti vyskytovala.[22] Je nyní spíše otázkou, kdy a jak dlouho se tam tekoucí voda nacházela a kam se poděla. Předpokládá se, že povrch Marsu byl zaplaven oceánem v období noachianu.[23] Vlivem ochlazování planety v hesperianu došlo k zmrznutí povrchové vody, část jí zřejmě unikla do kosmického prostoru. Následné erozivní procesy pohřbily část zmrzlého ledu pod povrch Marsu. Vedle těchto zatím neprozkoumaných vodních zdrojů se na pólech nacházejí dvě polární čepičky, které jsou částečně tvořeny vodním ledem a částečně suchým ledem. Předpokládá se, že se voda vyskytuje i ve formě permafrostu, který by měl zasahovat až do oblastí kolem 60°. V roce 2007 NASA provedla odhad množství vody zachycené v jižní polární čepičce. Dle modelu by veškerá voda zaplavila celý Mars do výšky 11 metrů.[24]

Díky novým podrobným snímkům byly na povrchu Marsu rozlišeny geomorfologické pozůstatky vodní činnosti v podobě říčních koryt, sedimentů, pozůstatky zaplavených oblastí, či relikty po rychlém úniku vody z kryosféry Marsu vlivem vulkanické aktivity. Předpokládá se, že jeden podobný obrovský únik vytvořil i údolí Valles Marineris, které vzniklo v dávné historii Marsu. Dalším příkladem může být Cerberus Fossae, u které se předpokládá vznik před 5 milióny let. Prolomení vyvrhlo vodu do oblasti Elysium Planitia, kde vytvořila ledové moře viditelné do dnešních dnů.[25].

[editovat] Magnetické pole a radiace

Mars má slabé magnetické pole, jehož ochranná funkce je však neporovnatelně menší než u zemského magnetického pole. Měření sondy Mars Global Surveyor přinesla důkazy, že krátce po vzniku planety měl Mars dynamičtější povrch, který se více podobal Zemi.[26] Měření magnetometrem ukázalo magnetické pruhy, což svědčí o silnějším magnetickém dynamu, které pracovalo několik miliónu let po vzniku. Neznámá událost (možný dopad asteroidu) však toto pole narušila.[26]

Ze zjištění vědců z amerického Úřadu pro letectví a vesmír (NASA), kteří analyzovali získaná data ze sondy Mars Odyssey, vyplývá, že radiace na oběžné dráze Marsu je 2,5krát větší než na Mezinárodní vesmírné stanici a dosahuje tak limitů pro bezpečný pobyt. NASA považuje tento problém za zvládnutelný pomocí stínítek a systémem varování před vyšším zářením od Slunce.[27]

[editovat] Oběžná dráha

Mars obíhá kolem Slunce ve vzdálenosti mezi 206 644 545 km v perihelu a 249 228 730 km v afelu. Doba jednoho oběhu kolem centrální hvězdy je 686,9601 pozemského dne. Kolem své osy se Mars otočí za dobu, která je velmi podobná délce pozemského dne – 24 hodin 39 minut 35,244 sekund (Země 23 hodin, 56 minut a 4,091 sekund). Úhlový sklon planetární osy 25,19° je srovnatelný se sklonem 23,44°, který má Země. Díky tomuto sklonění jsou zde roční období, podobná těm na Zemi, ačkoli jsou téměř dvakrát tak dlouhá, neboť „marsovský rok“ činí 1,88 roku pozemského.

Vzdálenost od Země se v průběhu oběžné doby mění v rozmezí mezi 55 milióny až 400 milióny kilometrů v pravidelném cyklu 16 let, kdy nastává nejpříznivější opozice planety pro pozorování a pro vysílání kosmických sond. Díky tomu, že se Mars přibližuje, či oddaluje od Země, dochází současně k poklesu jeho hvězdné velikosti – pohyb mezi 1,6m až –2,8m, zdánlivý průměr 4" do 25". Tato nepravidelnost má za následek, že v některých obdobích je Mars čtvrtým nejjasnějším tělesem na obloze po Slunci, Měsíci a Venuši a jindy je méně jasný než Jupiter.

Předposlední velká opozice Marsu a Země byla v roce 2003, kdy Mars byl nejblíže 55,757 milionu kilometrů[28]. Zatím poslední pak nastala 7. listopadu 2007, kdy byl Mars při pozorování ze Země až 55° nad obzorem. Další nastane 29. ledna 2010, kdy bude mít Mars magnitudu -1,2 a další pak 3. března 2012, kdy bude mít -1,1.

[editovat] Měsíce

Podrobnější informace naleznete v článcích Phobos (měsíc) a Deimos (měsíc).
Měsíce Phobos (nalevo) a Deimos (napravo)
(Ilustrační fotografie)

Okolo planety obíhají dvě přirozené družice – Phobos („strach“) a Deimos („hrůza“). Obě dvě tělesa mají vázanou rotaci, což znamená, že ukazují Marsu stále stejnou stranu. Velmi nápadně se chemickým složením a tvarově podobají tělesům, které tvoří pás planetek mezi Marsem a Jupiterem, což vedlo k teorii, že se jedná o asteroidy, které Mars svojí gravitací zachytil.[29] Pro definitivní zodpovězení této otázky bude nutné odebrat vzorky z povrchu těchto měsíců.

Oba měsíce objevil Asaph Hall v roce 1877 a pojmenoval je podle synů boha Marta. Zajímavostí je, že existence měsíců byla několikrát předpovězena v literatuře dlouho před jejich objevením. Johannes Kepler byl přesvědčen, že pokud má Země jeden měsíc a Jupiter 4 měsíce (v jeho době byly známy pouze Galileovy měsíce Jupitera), musí mít Mars kvůli harmonii kosmu měsíce dva. O dvou marsovských měsících psal i Jonathan Swift v knize Gulliverovy cesty (1726) či Voltaire v díle Micromégas (1752).